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Abstract: This study presents a depth map estimation of fluorescent objects in turbid media,
such as biological tissue based on fluorescence observation by two-wavelength excitation and
deep learning-based processing. A U-Net-based convolutional neural network is adapted for
fluorophore depth maps from the ratiometric information of the two-wavelength excitation
fluorescence. The proposed method offers depth map estimation from wide-field fluorescence
images with rapid processing. The feasibility of the proposed method was demonstrated
experimentally by estimating the depth map of protoporphyrin IX, a recognized cancer biomarker,
at different depths within an optical phantom.
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1. Introduction

Fluorescence imaging has improved tumor diagnosis by providing real-time and high-contrast
capabilities [1,2]. Photodynamic diagnosis (PDD) using 5-aminolevulinic acid (ALA) has been
widely employed for intraoperative tumor diagnosis in various areas, including malignant glioma
[3], bladder cancer [4], and prostate cancer [5]. ALA administration leads to protoporphyrin
IX (PpIX) accumulation, specifically in tumor tissue [6]. The fluorescence emission from PpIX
enables high-contrast visualization of tumor areas. The selective accumulation of PpIX has
been observed in various tumor types, providing its application in the treatment of different
cancers [7]. In addition, it can improve imaging in PpIX-PDD, such as quantifying tumor depth
in tissue [8–10]. Accurate quantification of tumor depth within tissue enables surgical planning
and treatment strategy determination. Information on tumor depth assists surgeons in managing
margins more appropriately within the resection area [11]. This could lead to shorter surgery
durations and reduce the likelihood of requiring follow-up operations. Information on tumor
depth also aids in the diagnosis of tumor invasion. Endoscopic resection for early gastric cancer
is carried out for patients with tumors situated within the gastric mucosa or the submucosal
layer [12,13]. It is anticipated that intraoperative tumor depth diagnosis using endoscopy will be
utilized for patient screening prior to endoscopic resection.

A method based on the linear relationship between fluorescence intensity ratio and fluorophore
depth has been developed to measure the depth of fluorophores within biological tissue [8–10].
This technique leverages the wavelength-dependent optical properties of the tissue. By acquiring
fluorescence images at different excitation wavelengths, variations in fluorescence intensity arise
owing to the wavelength-dependent attenuation of the excitation light [14]. The relationship
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between fluorescence intensity ratio and fluorophore depth can be modeled using the attenuation
of excitation light at each wavelength in advance. Based on the relationship between the
fluorescence intensity ratio and fluorophore depth, the fluorophore depth information can be
estimated from the measured fluorescence intensity ratio. This approach is promising for clinical
applications, such as intraoperative use, as it utilizes wide-field optical systems that allow for
relatively simple data acquisition and processing [15]. However, when multiple fluorescent
objects are present with different positions and depths, the relationship between fluorescence
intensity ratio and fluorophore depth does not hold, reducing accuracy [10,16]. A fluorescence
depth estimation method is needed for several locations using fluorescence intensity ratios.

Here, we present a method employing a deep learning model to an estimation depth map
of multiple fluorescent objects consisting of PpIX from images of two-wavelength excitation
fluorescence using a measured fluorescence intensity ratio map. To estimate a depth distribution
of PpIX within a turbid media, a fluorescence ratio map from two fluorescence images acquired
through two-wavelength excitation is prepared. The fluorescence ratio map image is input
into a deep learning model, which utilizes a convolutional neural network (CNN) architecture
to output the depth map of PpIX. The CNN model is trained using a dataset of fluorescence
images generated through Monte Carlo simulations. Utilizing the deep learning model allows
our proposed method to handle cases where multiple fluorescent objects exist, and estimation
accuracy is decreased with a linear model of the fluorescence ratio. The utilization of wide-field
imaging and real-time processing holds the promise of enabling the rapid acquisition of depth
information, ultimately contributing to advancements in fluorescence tumor diagnosis.

2. Materials and methods

2.1. PpIX depth map prediction using U-net

Figure 1 shows the procedure for depth map estimation using a deep learning model. Fluorescence
images, Fb(x, y) and Fg(x, y), are obtained with excitation at wavelengths of 405 and 505 nm. The
excitation wavelengths of 405 and 505 nm were selected from the absorption peak wavelengths
in the region below 600 nm where the fluorescence wavelength band of PpIX does not overlap
[14]. The 405-nm wavelength light irradiation excites around the maximum absorption peak and
is attenuated by tissue absorbance and scattering. This leads to strong excitation of the PpIX
distributed near the tissue surface and little excitation of the PpIX distributed deeply in tissues.
In contrast, the 505-nm wavelength excitation light, which excites smaller absorption peaks than
405 nm, can be delivered to the PpIX distributed deeply in tissues. For example, the optical
penetration depths where the light intensity decreased to 1/e of porcine gastric mucosal tissue
were reported as 0.26 mm and 0.66 mm for 405 nm and 505 nm of light excitation, respectively
[14]. The 505-nm wavelength excitation light can increase the fluorescence intensity of PpIX
distributed deeply in tissues compared to 405-nm light irradiation. A fluorescence ratio map
Γ(x, y) is defined as below:

Γ(x, y) =

{︄ Fb(x,y)+Fg(x,y)
Fg(x,y) if Fg(x, y) ≠ 0,

1 if Fg(x, y) = 0.
(1)

The fluorescence ratio map is fed into a neural network with a U-Net structure to obtain a
depth map of PpIX objects [17]. The neural network is trained to output a depth map of the
PpIX objects. The resulting depth map does not distinguish whether PpIX was present or deeply
located, as Γ(x, y) indicated 1 for both conditions. To address this, the region that indicated the
estimated depth of the area where PpIX fluorescence cannot be detected by 505-nm excitation is
judged as an area where PpIX is absent. Thus, a PpIX depth map can be obtained.

Figure 2 shows the U-Net-based architecture to estimate a fluorescence depth map from
the PpIX fluorescence images obtained by 405- and 505-nm light irradiation. The model
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Fig. 1. Schematic of depth map estimation from fluorescence ratio map of dual-excited
PpIX fluorescence images.

comprises 29 layers, including input, output, and convolutional layers. The number of filters
in the convolutional layers was set to 64, 128, 256, 512, and 1024, with a kernel size of 3×3.
A regression model was designed to output the optimal depth map for the input fluorescence
ratio image. The network adopted the ReLU activation function [18]. The ReLU activation
function, widely used in neural networks, outputs zero for any negative input and retains positive
input as is. The Adam optimization algorithm [19] was employed. The Adam algorithm is a
method in machine learning for solving optimization problems in complex systems. Root mean
squared error between the estimated and the ground-truth depth maps was employed as a loss
function. The network was trained using the hold-out method. Only numerically simulated data
was used for training and validation. For training and validation, simulated datasets of pairs of
the fluorescence ratio image and the depth map were prepared. The dataset was split into an
80:20 ratio, allocating 80% for training and 20% for validation. The network was trained with
epochs = 40, batch size = 475, and learning rate = 0.0001.

Fig. 2. Adopted U-Net architecture for depth map estimation.
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2.2. Simulated fluorescence image

For datasets, Fb(x, y) and Fg(x, y) were generated computationally. Fb(x, y) and Fg(x, y) were
assumed as the PpIX fluorescence intensity distributions on the tissue surface. Fb(x, y) or Fg(x, y)
can be expressed as follows.

Fb(x, y) =
∫ ∫ ∫

ϕ(x − x′, y − y′,−z′)Pb(x′, y′, z′)εbO(x′, y′, z′)Qdx′dy′dz′, (2)

Fg(x, y) =
∫ ∫ ∫

ϕ(x − x′, y − y′,−z′)Pg(x′, y′, z′)εgO(x′, y′, z′)Qdx′dy′dz′, (3)

where ϕ(x, y, z), Pb(x′, y′, z′), Pg(x′, y′, z′), εb, εg, O(x′, y′, z′) and, Q are a point spread function
for PpIX fluorescent imaging, excitation distribution for 405 and 505 nm, molar absorption
coefficients for 405 and 505 nm, PpIX concentration, and quantum yield of PpIX. In this study,
for simplicity, the PpIX concentration was represented by binary values of 0 and 1, indicating
the absence or presence of PpIX, respectively. Also, Fb(x, y) and Fg(x, y) were normalized by
the fluorescence intensities of the PpIX at the surface (z = 0), to cancel factors, εb, εg, and Q in
Eqs. (2) and (3). The normalized Fb(x, y) and Fg(x, y) were prepared and used for training and
evaluation of the U-Net model. The functions of Pb(x′, y′, z′), Pg(x′, y′, z′) were calculated by a
Monte Carlo (MC)-based calculation of light transportation in an optical phantom simulating
tissue. The MC-based calculations were performed using a software package named Monte Carlo
eXtreme (MCX) [20]. The numerical optical model comprised a cube with a size of 400 × 400
× 400 voxels and a voxel size of 0.25 × 0.25 × 0.25 mm. The upper 20 mm of the model was
set as an air layer and the rest as a tissue layer. The optical properties adopted in the simulation
are presented in Table 1. The optical properties of the phantom were set to values of an optical
phantom employed in experimental verification. Anisotropy factors were assumed as 1 for the air
layer and 0.9 for the phantom layer. The number of photons for the MC calculation was set to
108. The excitation lights at 405 and 505 nm were assumed to be a circular light source with a
diameter of 100 mm and were irradiated perpendicular to the tissue layer. ϕ(x, y, z) is defined as
the fluorescence spread at the surface of the tissue from the PpIX point source at a coordinate
(x, y, z). ϕ(x, y, z) was calculated using MCX with an interval of 0.1 mm between z = 0–2.5 mm
in advance. The wavelength of the PpIX fluorescence was approximated to the single wavelength
of 635 nm. The center 64 × 64 pixels (16 × 16 mm) of the calculated fluorescence intensity
distribution was cropped and adopted as a simulated fluorescence image.

Table 1. Absorption and scattering coefficients (µa and µs) employed in simulation.

Air layer 405,
505, 635 nm

Phantom layer
405 nm

Phantom layer
505 nm

Phantom layer
635 nm

µa (mm−1) 1.0×10−3 0.65 0.10 0.04

µs (mm−1) 0.1 17.3 9.1 5.2

2.3. Dataset generation

Numerical tissue models, including two PpIX pellets, were generated for the datasets. The
shape of PpIX pellets was circular disks with their thickness and diameter adjusted according
to the evaluation contents. Two types of datasets, Datasets A and B, were prepared. Dataset A
comprises 8,239 pairs of fluorescence ratio and depth maps, where the diameter of PpIX pellet
was 2 mm. Dataset B comprises 24,837 pairs of fluorescence ratio and depth maps, where the
diameters of PpIX pellet were 1, 2, or 3 mm. The PpIX pellets were arranged horizontally on the
surface of the tissue. The thickness of the PpIX pellet was ignored (= 0 mm) in the simulations.
The fluorescence depth was defined as the length between the tissue surface and the PpIX pellets.
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The two PpIX pellets were randomly placed within the fluorescence depth of 2.5 mm with 0.1
mm resolution. Fluorescence images by excitation of 405 and 505 nm were simulated for each
numerical model, as shown in Sec.2.2. The fluorescence ratio maps were calculated from the
sets of fluorescence images by Eq. (1). The fluorescence depth map was also created from the
location information of the PpIX pellets in the numerical tissue model. The depth was defined
as the deeper value in the overlapped region of the PpIX pellets in the depth map. Thus, the
fluorescence ratio map sets and the corresponding depth map were prepared. Each dataset was
split into an 80:20 ratio, allocating 80% for training and 20% for validation.

For test dataset, fluorescent images with two PpIX pellets were placed at varying depths. Ten
data for each of the three scenarios: the positions of two PpIX pellets on the depth map were
separated, touched, and overlapped. The positions of the PpIX pellets in the x and y directions
were manually set, while the other procedures were the same as those in the training dataset. 10
data were prepared for each scenario.

2.4. Evaluation index

Two indices were utilized to assess the performance of the trained network. The Dice coefficient
was adopted to evaluate the estimated location of PpIX fluorescence in the xy-direction. The
Dice coefficient, D, is denoted as below:

D =
2 × NE∩T
NE + NT

, (4)

where NE and NT represent the number of pixels in the regions where the PpIX is assumed to
exist in the estimated and ground truth depth maps, respectively. NE∩T represents the number of
pixels where the PpIX is assumed to exist in both the ground truth and estimated depth maps.
Estimation error was calculated as the difference between the estimated depth map and the ground
true depth map. For quantitative comparison, mean absolute error (MAE) was calculated within
the region where fluorescence is assumed to exist in both the estimated and ground truth depth
maps.

2.5. Optical setup

The optical setup utilized for fluorescence observation is illustrated in Fig. 3(a). Fiber-coupled
laser sources with wavelengths of 405 (WSLS-405-002-M, Wavespectrum Laser.Inc.) and 505
nm (WSLS-505-020m-PM, Wavespectrum Laser.Inc.) were employed as excitation light sources.
The light sources were switched for the fluorescence images for the 405- and 505-nm light
excitation. The fiber ends were fixed and adjusted to make the excitation light almost uniform on
the sample surface within the observation field. The excitation light intensities on the sample
surface were measured using a power sensor (PD300-UV, OPHIR) with a display (NOVA II,
OPHIR) attached to the sensor head. The excitation light intensity was set as 12.8 mW/cm2 at
405 nm and 1.27 mW/cm2 at 505 nm on the sample plane. Fluorescence images were captured
using a CMOS monochrome camera (Chameleon3, CM3-U3-31S4M, FLIR) and a lens (f=16
mm, F1.4, NMV-16M1, Navitar). A long-pass filter (FELH0600, Thorlabs) was placed in front
of the camera lens to cut off the excitation light.

2.6. Sample preparation

Optical phantoms and PpIX pellets were prepared in the same manner as the previous reports
[14,21]. Hemoglobin, TiO2, and gelatin were used as the absorber, scatterer, and support,
respectively. The final concentrations of hemoglobin, TiO2, and gelatin were adjusted to 0.5
mg/ml, 1.0 mg/ml, and 50 mg/ml. The absorbance and scattering coefficients of the optical
phantom were measured as 0.65 mm−1 ± 0.04 and 17.3 mm−1 ± 0.7 for a wavelength of 405 nm,
0.10 mm−1 ± 0.01 and 9.1 mm−1 ± 0.3 for 505 nm, and 0.04 mm−1 ± 0.01 and 5.2 mm−1 ± 0.2



Research Article Vol. 14, No. 10 / 1 Oct 2023 / Biomedical Optics Express 5259

Fig. 3. (a) Optical setup. (b) Cross section of phantom.

for a wavelength of 405 nm, using a double-integrating sphere in the same manner as described
in the Ref. [22]. The diameter of the PpIX pellet was 2 mm. The PpIX pellets were located in
the optical phantom at a depth of around 0.5 and 1 mm. To measure the depth of PpIX pellets,
after fluorescence image acquisitions, the optical phantom was sliced, and the cross-section was
observed by a microscope to measure the depth of the PpIX pellets (Fig. 3(b)). Six samples were
prepared in total for experimental evaluation.

2.7. Fluorescence image acquisition

Fluorescence images of a sample were obtained by excitation light wavelengths of 405 and 505
nm. Each sample was imaged three times per excitation wavelength, and the averages were taken
as measured fluorescence images. The exposure times were adjusted in the range of 1–70 ms
for each sample to prevent saturation of the pixel values in the measured fluorescence image.
Then, the pixel values of all fluorescence images were adjusted to match the pixel values of
the fluorescence image taken at 70 ms of exposure time, based on the linearity between the
exposure time and brightness [14]. As calibration fluorescence images, fluorescence images
of a sample where the PpIX pellet was located on the phantom surface were taken for each
excitation light wavelength. The pixel values of all fluorescence images were normalized to the
maximum brightness of the calibration fluorescence images per each excitation wavelength. To
input the acquired fluorescence intensity ratio images into a trained deep learning model, the
central areas were trimmed and resized to 64 × 64 pixels using a Gaussian filter to match the size
and resolution of the simulated fluorescence images.

3. Results

3.1. Numerical verification

To demonstrate depth map estimation, the network was trained using Dataset A. The training time
was 23.7 min on a computer with an NVIDIA GeForce RTX 3060 Laptop GPU. The average
calculation time was 21 ms to estimate a fluorescence depth map. Figure 4 shows an example of
estimation results from simulated fluorescence images for three conditions: separated, touched,
and overlapped. The Dice coefficients and MAEs are listed in Table 2. The Dice coefficients
slightly decreased for the touched and overlapped cases compared to the separated ones. In the
worst case, the average and 2σ of MAE were 0.29 and 0.18 mm, which means that 95% of the
absolute error was suppressed within 0.47 mm.
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Fig. 4. Numerical evaluation results from simulated fluorescence images for three conditions:
(a) separated, (b) touched, and (c) overlapped pellets. (i) Ground truth depth map. Simulated
fluorescence images by (ii) 405-nm (iii) 505-nm excitation light. (iv) Fluorescence ratio
map. (v) Estimated map. (vi) Estimation error map. Black scalebar indicates 5 mm.

Table 2. Quantitative analysis of numerical experiments (n = 10
for each scenario).

Sample type Dice coefficient Mean absolute error [mm]

Separated 0.95 ± 0.03 0.16 ± 0.05

Touched 0.88 ± 0.08 0.18 ± 0.03

Overlapped 0.88 ± 0.07 0.29 ± 0.09

3.2. Numerical evaluation of robustness to tissue optical property

To evaluate the effect on the estimation accuracy by the variances of the optical property values,
depth estimation was performed by inputting fluorescence images generated by varying the
absorption and scattering coefficients of the optical phantom layer by ±5 %, ±10 %, and ±15 %.
The values for the absorption and scattering coefficients are provided in Supplemental Table S1
for further reference. The ±15% variations in optical properties were set based on the observed
variability within the optical phantoms we experimentally fabricated. When altering the optical
properties, absorption and scattering coefficients increased or decreased together. The other
conditions and the trained network were the same as the verifications in Sec. 3.1. Figures 5(a,b)
show estimation results from simulated fluorescence images for the same condition with the
separated location shown in Fig. 4(a) but the optical property values were varied ±15 %. For
the case of −15 % optical property values (Fig. 5(a)), the mean estimated error in the shallower
pellet was −0.13 mm, and that in the deeper pellet was −0.14 mm. Both pellets were estimated
to be shallower in the center. In the case of a +15 % optical property value (Fig. 5(b)), the mean
estimated error in the shallower pellet +0.16 mm and that in the deeper pellet was +0.12 mm.
The PpIX pellets were estimated to be deeper in both conditions. Because the absorption and
scattering coefficients of the optical phantom at a wavelength of 405 nm are larger than those
at a wavelength of 505 nm, the influence of changing the optical property values is significant.
Increased optical properties at 505 nm reduce the fluorescence intensity ratio due to the greater



Research Article Vol. 14, No. 10 / 1 Oct 2023 / Biomedical Optics Express 5261

optical penetration depth of the 505 nm excitation light, leading to estimations of a shallower
location. In contrast, decreased optical properties at 505 nm increase the fluorescence intensity
ratio, leading to estimations of a deeper position. Figures 5(c, d) show D and MAE in-depth
estimation of the pellets in phantoms with varied optical properties. The MAE increased with
the gaps in the optical properties between the simulated model for generating the training dataset
and the actual sample.

Fig. 5. Examples of depth estimation results simulated fluorescence images of PpIX in
phantoms with (a) −15 %- and (b) +15 %-varied optical property values. Relationship
between change of optical properties and evaluation items: (c) Dice coefficient and (d) mean
absolute error. Black scalebar indicates 5 mm

3.3. Numerical evaluation of robustness to fluorescence structure

To evaluate the robustness of the PpIX distributions, we compared models trained on Datasets A
and B. Using each model, we estimated depth maps for two disk-shaped pellets with diameters
of either 1 or 3 mm. An example of the ground-truth depth map, estimated depth map, and
comparison map for each condition in depth estimation using the simulated fluorescence images
is shown in Figs. 6. By training with Dataset A, D and MAE were 0.57 and 0.99 mm for a
diameter of 1 mm (Fig. 6(a)), and D and MAE were 0.56 and 0.70 mm for a diameter of 3 mm
(Fig. 6(b)). In Fig. 6(a.ii), two objects with a diameter of about 2 mm were observed at the
true position of the PpIX pellet with a diameter of 3 mm. In Fig. 6(b.ii), two objects with a
diameter of about 2 mm patterns were observed around the position where the PpIX pellet with a
diameter of 1 mm should be. These indicate that the trained model might lose its generalization
performance for the PpIX distributions. By training with Dataset B, D was 1.0, and MAE was
0.20 mm for a diameter of 1 mm, while D was 0.97 and MAE was 0.09 mm for a diameter of 3
mm. Furthermore, Fig. 7 shows the correct depth map, estimated depth map, and comparison
map for a 1.4- or 2.4-mm diameter not included in the training dataset and the estimated depth
map generated by the new trained model. For a diameter of 1.4 mm, D and MAE were 0.72 and
0.28 mm. For a diameter of 2.4 mm, D and MAE were 0.93 and 0.17 mm. These results indicate
that increasing the variation in the training dataset improves the estimation accuracy for unknown
shapes. In clinical use, it is suggested that reflecting the characteristics of the diagnostic target,
such as tumor shape, in the fluorescent intensity ratio image of the training dataset can lead to
more accurate depth map estimation. To accurately reflect the structural characteristics of actual
tumors, it is required to expand the field of view in the fluorescent imaging data used for training.
This need arises from the fact that tumor sizes usually exceed the size of both simulated and
experimental fluorescence images employed in this study.
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Fig. 6. Depth estimation results of fluorophores of (a) 1 mm and (b) 3 mm diameter pellets
from simulated fluorescence images. (i) Ground truth depth map. Estimated depth map by
the neural networks trained by (ii) Dataset A and (iii) Dataset B. Black scalebar indicates 5
mm.

Fig. 7. Depth estimation results of fluorophores of (a) 1.4 mm and (b) 2.4 mm diameter
pellets from simulated fluorescence images. (i) Ground truth depth map. Estimated depth
map by neural networks trained by (ii) Dataset B.Black scalebar indicates 5 mm.

3.4. Experimental validation of fluorescence depth estimation

Fluorescence ratio maps were obtained from experimentally acquired fluorescence images, and
the depth maps were estimated using the network trained by Dataset A. Figure 8 shows the
estimation results of depth maps from the fluorescence images acquired experimentally with the
optical setup. The results of estimating six samples were D of 0.73 ± 0.08 and MAE of 0.46
± 0.11 mm. Figure 9 shows the measured and estimated pellet depths for all samples. MAE
was 0.74 ± 0.35 mm for shallower pellets and 0.22 ± 0.16 mm for deeper pellets, indicating an
overall tendency to estimate deeper.
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Fig. 8. An experimental result from fluorescence images acquired experimentally.(i) Ground
truth depth map. Measured fluorescence images by (ii) 405-nm (iii) 505-nm excitation light.
(iv) Fluorescence ratio map. (v) Estimated map. (vi) Estimation error map. Black scalebar
indicates 5 mm.

Fig. 9. Relationship between setting depth and estimated error of fluorescence object in
depth estimation from fluorescence images acquired experimentally. Error bar in x axis
indicates standard deviation of setting depth. Error bar in y axis indicates standard deviation
of estimated depth.

4. Discussions

Numerical and experimental results demonstrated that the U-Net-based convolution network
could estimate the depth map of the PpIX sheeted in tissues by using the fluorescence intensity
ratio information. From the fluorescence ratio map, which contains the fluorescence information
from different depths, the depth of each PpIX pellet can be estimated with simple and fast
processing (≃ 21 ms). The numerical validation revealed the accurate estimation result with
a Dice coefficient of 0.91 and an absolute error of 0.19 mm. In experiments, the depth map
can be provided only by obtaining dual excitation fluorescence only by fluorescence excitation
wavelength switching. Due to the effects of attenuation by the tissue of both excitation light and
fluorescence, the fluorescence of PpIX near the superficial layer is dominant in fluorescence
images. However, as shown in Fig. 9, the experimental results yielded a smaller estimated error
in the estimation of pellets located deeper within the tissue. Although this observation may be
influenced by experimental variables, such as pellet thickness, it indicates that machine learning
is capable of effectively estimating depths for multiple targets, including those situated deeper
within the tissue. Within the depth range of a few millimeters considered in this study, our
findings suggest that three-dimensional structural information is likely obtainable, irrespective of
the fluorescence intensity contributions to the images. These results indicated the potential for
clinical applications, such as depth diagnosis of early gastric cancer, for which quantitative depth
estimation is currently difficult.

For example, in the clinical management of gastric cancer, the choice between endoscopic
resection and surgical intervention is determined based on the depth of tumor invasion [23]. The
accumulation of PpIX in early gastric cancer due to ALA administration has been reported in
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several studies [24,25]. To facilitate minimally invasive treatments, Endoscopic Submucosal
Dissection (ESD) is recommended for intramucosal cancers or those with submucosal invasion
not exceeding 500 µm [26]. The average thickness of the gastric mucosa is approximately 1.3 mm
[27]; therefore, it is imperative to accurately gauge the tumor’s location within an approximate
depth of 2 mm from the surface.

Compared to the numerical evaluations, both D and MAE exhibited poorer performance in
the fluorescence experiments. One possible reason for this decrease may lie in the disparities
between the simulated images used for training and the actual fluorescent images obtained during
experiments. Figures 4(ii, iii) and 8(ii, iii) show the simulated and experimentally-acquired
fluorescence images, respectively. The fluorescence distribution appears more expansive in the
simulated images compared to its more localized spread in the experimental captures. This
divergence could be ascribed to factors such as the limited detection sensitivity of the camera used
in the experimental setup and quantization errors affecting intensity levels. The discrepancies
between simulated and actual fluorescence images may contribute to the observed degradation in
the network’s estimation performance.

According to the mathematical model evaluation, when the optical property value increased by
+15%, the MAE was 0.32 mm. The optical property values of the optical phantom employed in
the experiment had a coefficient of variation of approximately 10% in the excitation wavelengths
that significantly affected the estimation, suggesting that the estimation error in the experiment
was influenced by the optical property values. In training the network, the optical property
parameters were assumed constant. However, actual biological tissues have heterogeneity in
optical properties [28], and the difference between assumed and actual optical property values
becomes larger, which is expected to reduce the estimation accuracy. This problem can be
addressed by creating a training dataset based on the expected range of optical property values
for biological tissues and training the model. To construct a training dataset that reflects diverse
optical properties, it is essential to perform a comprehensive evaluation of the optical properties
of the targeted tissue. This will allow for the creation of a model that accounts for individual
variations. It should be noted that the nature of these variations can differ substantially depending
on the tissue type [29].

In the depth estimation, the target objects were limited to disc-shaped without thickness, and
two PpIX pellets were arranged within the image. However, tumors have three-dimensional
shapes, such as thickness, and the number of fluorescence objects included within the image is
indefinite. For the three-dimensional shape of fluorescent objects, previous studies have shown
that the distribution of thick fluorophores can be estimated using the linearity of fluorescence
intensity ratios [30]. Similar to this study, a distribution might be estimated from fluorescence
intensity ratio images in a deep learning model. Another limitation of this study is the simplified
representation of PpIX concentrations. Both simulated and experimental fluorescence images
used simplified PpIX concentrations to binary values. The actual concentrations of PpIX within
tumor tissues are not binary by nature [3]. Consequently, future research targeting clinical
applications would require the use of simulated fluorescence images that more accurately reflect
the realistic PpIX distribution for training the networks.

In the adopted optical system, the irradiation position and angle were set such that the excitation
light intensity distribution on the sample surface approached uniformity. In addition, the sample
surface was horizontal and smooth. However, during actual observation of biological tissues, the
endoscope tip angle is not constant with respect to the tissue, and it may be difficult to observe
from the front, depending on the tumor’s position. Therefore, the excitation light intensity
distribution on the tissue and fluorophore is not uniform, and the reflection effect is significant
[23]. To apply this model clinically, we assume real-time estimation of the depth of penetration
through the endoscopic observation system. It is essential to utilize images that reproduce the
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excitation light irradiation angle and intensity distribution within the camera field of view that
may occur during endoscopic observation in the training dataset.

The PpIX pellet, localized within the optical phantom, was employed in the validations.
Because adenocarcinoma, which accounts for 90% of gastric cancers, has the characteristic of
invading deep into the tissue from the mucosal surface, it is necessary to estimate the position of
the deepest part of the thick fluorophore to apply this model. Tumor depth information is crucial
for determining the eligibility for ESD. However, in the case of gastric cancer, accurate depth
diagnosis under endoscopy is currently difficult, for example, early gastric cancer sometimes is
localized within the tissue without exposing the tumor to the mucosal surface [31]. In addition,
cases have been reported where the diagnosis is affected by the appearance of low-grade dysplastic
epithelium on the tumor surface, even after Helicobacter pylori eradication by conventional white-
light imaging with magnifying videoendoscope [32]. The proposed method may be beneficial
for diagnosing lesions localized within the mucosa, since the feasibility of implementing ESD
eligibility diagnosis based on depth estimation under endoscopy is anticipated.

5. Conclusion

We proposed a method for estimating the three-dimensional distribution of fluorescent molecules
within tissues using a deep learning model that utilizes the fluorescence intensity ratio images of
two wavelengths observed on the tissue surface. We confirmed that the proposed method could
estimate fluorescent molecules’ planar position and depth. The estimation accuracy experimentally
achieved a Dice coefficient of 0.73 for planar position estimation and an mean absolute error of
0.50 mm for depth estimation. This study does not reflect the optical characteristics of biological
tissues and assumes that fluorescent molecules are inside the tissues. By creating a training
dataset that matches the characteristics of the lesions targeted, such as gastric cancer, and training
the model, we expect to improve the diagnostic accuracy in clinical applications.
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